
TCU & UNTHSC Volunteer Scheduler

Developer Manual
Version 2.4

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 1

Revision History
Date Version Description Author

2020 1.0 Started “How to Run” and “Accessing
Database” sections

not Lydia Pape

Early 2021 1.1 Started API document Lydia Pape

2021 1.2 Updated API document Lydia Pape

04/18/2021 2.0 Updated “How to Run” instructions Lydia Pape

04/18/2021 2.1 Added instructions on how to run the front
end (Section 2.2)

Maria Amoros

04/26/2021 2.2 Removed some redundant instructions from
how to run back end section (already

covered in how to run front end section)

Lydia Pape

04/26/2021 2.2 Updated API document with small changes
to request methods for Bulk Delete and

Find by Email

Lydia Pape

04/27/2021 2.3 Started section on PostgreSQL Heroku
deployment

Lydia Pape

05/04/2021 2.4 Finished PostgreSQL section (3.2), added
sections on Firebase and Deployment to

Heroku

Riley Durbin

05/04/2021 2.4 Filled in Section 7: Domain Name
Management

Jeshua Suarez-Lugo

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 2

Table of Contents

1. Introduction 4

2. Getting Started 4
2.1 How to run backend 4
2.2 How to run frontend 6

3 Accessing Database 8
3.1 H2 Console in Browser 8
3.2 PostgreSQL Heroku Server 8

4 Communication Between Front end and Back end 9
4.1 API Document 9

5. Firebase Management 30

6. Deployment to Heroku 30

7. Domain name management 31

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 3

1. Introduction
1.1 Purpose
The purpose of this document is to provide current and future developers of this project an
explanation on how the software operates and how to use it.

1.2 Project Overview
The TCU & UNTHSC Volunteer Scheduler is a web application built using Springboot for its
backend, and Vue.js for its frontend. It consists of the major components of:

● Vue.js front end: progressive framework for building user interfaces.
● Spring Boot back end: Using Java 11, it does all the business logic and handles

requests sent from the front-end.
● Firebase Authentication: Users are being authenticated and their accounts’ passwords

being managed.
● SQL Database: relational database that stores all data in the system

2. Getting Started

The project’s front end and back end are in separate Github repositories:
● Volunteer-App for the front end
● Server-Volunteer-App for the back end

The latter of these is deployed using Heroku, and includes a place for a front end build.
Each time a commit is pushed to Server-Volunteer-App’s main branch, the entire project is
redeployed with any new changes applied.

2.1 How to run backend
First, you must install all dependencies using Maven. Go to the /server directory and type:

./mvnw clean install

Then, to run the server type:

./mvnw spring-boot:run

The above command is the same thing as running the project in IntelliJ.

Further setup may be necessary to develop and run the back end using IntelliJ:
● Right-click pom.xml and select “make this a Maven project” (or similar)

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 4

● Add this Environment variable to ServerApplication’s configuration (see screenshots):
GOOGLE_APPLICATION_CREDENTIALS=src/main/resources/firebase-server-confi

guration.json (don’t forget to “Apply”)

● Find the Maven tab on the right and run “clean” then “install”

NOTE on testing the project locally:
Due to a complication with the deployment with Heroku, dates/times will be displayed with the
wrong time zone when running the project locally. There is a fix for this in the back end’s code,
commented out, in two places in CalendarEvent.java and two more in Attendance.java. Applying
this fix allows the times to display correctly when running the project locally, but will mess them
up in the deployed version. Here is what it looks like, for example, in CalendarEvent.java:

To apply the time zone fix for running locally, uncomment the first JsonFormat annotation for
each of these two variables (and, similarly, in Attendance.java) and comment out the last one.

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 5

2.2 How to run frontend

Node.js:
It is an open source server environment that is used to run and host the front end of the project
while developing. The version that we are using is the 14.16.1 LTS, and it can be found for
installation at https://nodejs.org.

Npm: We use the node package manager to install several different packages to be used while
developing in the front end, and it is installed when Node.js is installed.

Vue.js:
This project uses for the front end the progressive JavaScript framework vue.js. The version that
we are using is 3, and it is not compatible with vue 2. Per the vue.js website, this framework is
built by design to be incrementally adoptable. This means that it can be integrated into a project
multiple ways depending on the requirements. For this project, it needs to be installed using
npm by running the following command:

npm install vue@next

For Vue 3, you should use Vue CLI v4.5 available on npm as @vue/cli and can be installed as
following:

npm install -g @vue/cli

In case it is too far in the future, and you already have the vue CLI installed, you may want to
simply upgrade by running

vue upgrade --next

Additionally, axios is a lightweight HTTP client based on the XMLHttpRequests service used to
perform HTTP requests, and it can be installed by running

npm install --save axios vue-axios

In addition, there are many other dependencies in the front end that currently are as follows and
may need to be updated depending on how these dependencies have been updated.

● Vuex
● Vue-router
● Vue-full-calendar
● Primevue
● Primeicons

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 6

https://nodejs.org

● Firebase
● Eventservice
● Element-ui
● Core-js
● @types/webpack-env
● @fullcalendar/timegrid
● @fullcalendar/interaction
● @fullcalendar/daygrid
● @fullcalendar/core

The dependencies for the development in the front end are the following
● Babel CLI
● Babel core
● vue/cli-plugin-router
● vue/cli-service
● vue/cli-plugin-babel
● Sass-loader
● Vue-loader

For now all of these can be found and seen at the package.json.

In order to run the project and be able to see it in localhost:8080, you will need to run in the
terminal the following:

npm run serve

However, if trying to run the backend as well to test the website, it will not allow you to run since
it will attempt to run it as well in port 8080. This is why where the front end runs can be changed
by having a vue config file. Currently, you can find one in our project and it is called vue.config.js
and only has the following lines of code:

Module.exports = {

devServer: {

Port: 3000

}

}

This port can be changed in case anything else is running in port 3000.

In addition, since there are two repositories as mentioned above (one for the front end and one
for the backend), you need to compile and minify the front end for production and this can be
done by running:

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 7

npm run build

And since the deployment is done in the server repository, what needs to be done to have all of
your front end changes, is to

1. Delete everything in /Server-Volunteer-App/src/main/resources/static/

2. In the Volunteer-App frontend, run npm run build

3. Copy everything from /Volunteer-App/dist into
/Server-Volunteer-App/src/main/resources/static/

4. Run the spring boot project

3 Accessing Database

3.1 H2 Console in Browser
The data that has been persisted through the database or has been added in
DBDataInitializer.java and can be accessed by doing the following:

1. Run the spring boot application

2. Open your browser and navigate to localhost:8080/h2-console

3. Press “Connect” and you can now enter queries to the database.

3.2 PostgreSQL Heroku Server
1. Go to https://id.heroku.com/login
2. Log in
3. Select volunteer-server-springproject

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 8

https://id.heroku.com/login

You can now access the back end console by going to More > View logs

This can be used to find any console messages printed by the back end, which might be useful
information when someone using the deployed website experiences an error or a bug.

To browse the Database:
One way to browse the PostgreSQL database is through this tool. It is initially a 7-day free trial
but could be useful if you want to manually edit the database using a UI in the future :

1. Navigate to: https://datazenit.com/heroku-data-explorer.html
2. Sign in with your Heroku account
3. Select “volunteer-server-springproject”
4. Run a query or click one of the tables on the left-hand side of the screen.

You may also connect to the database using the terminal:
1. Make sure you have heroku-cli installed on your machine

a. https://devcenter.heroku.com/articles/heroku-cli
2. Make sure you have the psql command installed on your machine

a. https://devcenter.heroku.com/articles/heroku-postgresql#local-setup
3. In the terminal, run the command:

a. heroku pg:psql --app volunteer-server-springproject
b. (Note that there are two dashes before “app” in the command above.)

4 Communication Between Front end and Back end

4.1 API Document
All responses (the contents of response.data in the front end) (except with Reports) will
include a “flag” which will be true for success and false for failure, and a “code” which will be
200 for success or an error code for failure. The “message” and “data” fields will vary depending
on the request. All requests must include a header “Authorization” containing the
encoded Firebase token String.

The backend will send date/time information to the frontend as a String:
● "dd MMMMMMMMM', 'yyyy' at 'h:mm a"
● example "24 February, 2021 at 9:25 PM"
● Exception: Waitlisted timestamp field will be a long value instead of a String.

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 9

https://datazenit.com/heroku-data-explorer.html
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-postgresql#local-setup

The frontend will send date/time information to the backend using four fields (see relevant
examples for specifics on what to name the fields):

● Year, as a number (such as 2021)
● Month, as a string (such as “February”) (capitalization does not matter, but must be

spelled right)
● Day, as a number (such as 12)
● Time, as a string (such as “12:10 p.m.”) (AM or PM must be present, but the exact form it

takes does not matter; there doesn’t even have to be a space)
○ Other time examples that should parse just fine (this is not all of them)

■ “12:10 PM”
■ “12:10pm”
■ “12:10p.m.”
■ “12:10 P”

Where necessary, fields can be left blank: String fields can be an empty String, null, or any
invalid String, and numbers can be null or 0. It also works to leave the fields out altogether. The
backend will send back empty number fields as 0, and empty String, Date, and Enum fields as
null.

Some of the examples below are outdated: since they were captured, the “link” field has been
added to Events and the “status” field has been removed from Users.

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 10

Rows marked “admins only” will only work if the person responsible for the request is logged in as an admin.
Rows that deal with the current User rely completely on authentication with the Firebase token.

Request
Purpose

Request
Type

URL
Endpoint

Request Body Example Response
(in case of
success)

Example

Find all
Event
categories

GET “/calendar
/categories”

none N/A “message”:
“Find All
Categories
Success”,
“data”: [list
of the
names of all
Event
categories]

The values being
returned for this request
come from the
properties instead of
the database-- one can
change them by editing
application.yml.

Find all
Events the
current
User is
eligible for

GET “/calendar
/eligible”

none N/A “message”:
“Find
Eligible
Events
Success“,
“data”: [list
of all Events
the current
User is
eligible for]

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 11

Find all
Events
(admins
only)

GET “/calendar” none N/A “message”:
“Find All
Success”,
“data”: [list
of all events;
empty list if
there are no
events]

Find an
Event by ID

GET “/calendar
/{eventId}”

none URL: “message”:
“Find One
Success”,
“data”:
[event’s
data]

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 12

Save a new
Event
(admins
only)

POST “/calendar” Data for event, but
don’t worry about
ID

New field added:
String “link”

NOTE: to assign a
host organization,
the “organization”
field must contain
the organization’s
ID (would consider
renaming to
“partnerId”)

(the whole comment
isn’t shown; it will likely
be a longer string)

Default sex: ALL

“message”:
“Save
Success”,
“data”: [new
Event]

Update an
Event
(admins
only)

PUT “/calendar
/{eventId}”

Same as for saving
a new event; the
data will be applied
to the event with
the given ID

Fields left blank on
update will NOT be
overwritten.

URL:

Body:

“message”:
“Update
Success”,
“data”:
[updated
Event]

Delete an
Event
(admins
only)

DELETE “/calendar
/{eventId}”

none URL: “message”:
“Delete
Success”,
“data”: null

N/A

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 13

Find an
Event’s
Waitlist or
Signup list
(admins
only)

GET “/calendar
/{xy}
/{eventId}”

{x}:
n for
nonfaculty, or
f for faculty

{y}:
w for waitlist
or
s for signup
list

none URL Examples

Nonfaculty Waitlist:

Faculty Waitlist:

Non Faculty Sign Up
list:

Faculty Signup list:

“message”:
“Find
[Waitlist/
Signup list]
Success”,
“data”: [list
of Waitlisted
objects/
Users
signed up]

(a waitlist is
not just a list
of Users)

Note: this
waitlist
example
shows a list
with only
one item,
but it’s still a
list instead
of just the
item (also
these are
both
nonfaculty
lists)

Waitlist:

Signup list:

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 14

Find an
Event’s
Attendance
records
(admins
only)

GET “/calendar
/a/{eventId}”

none URL: “message”:
“Find
Attendance
Success”,
“data”: [list
of
Attendance
objects]

(not just a
list of Users)

Add the
current
User to an
Event’s
Waitlist or
Signup list

PUT “/calendar
/{x}
/{eventId}”

{x}:
w for waitlist
or
s for signup
list

none URL Examples:

Waitlist:
localhost:8080/calendar/
w/8

Signup:
localhost:8080/calendar/
s/8

“message”:
“[Waitlist/
Signup]
Success”,
“data”: null

Alternate responses:

Waitlist full on waitlist
attempt:

Event full, but waitlist
open, on signup
attempt:

Event and waitlist both
full on signup attempt:

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 15

Remove
the current
User’s
Waitlist or
Signup
status

DELETE “/calendar
/{x}
/{eventId}”

{x}: same as
above

none URL Examples:

Waitlist:
localhost:8080/calendar/
w/8

Signup:
localhost:8080/calendar/
s/8

“message”:
“[Removal
from
Waitlist/
Cancel
Signup]
Success”,
“data”: [null
for waitlist;
for signup,
the User
who was
signed up
instead, or
null if no one
was on the
waitlist]

For signup, when the
corresponding waitlist
wasn’t empty:

(In this example,
someone who is not
faculty cancelled their
signup. Maria was on
the non faculty waitlist;
this indicates that she
has now been signed
up as a result of the
cancellation.)

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 16

Check the
current
User In to
or Out of
an Event

POST “/check
/{eventId}”

Checkin date/time
and/or Checkout
date/time, in the
same form as for
events

If only one time is
given and the other
time has already
been stored in the
DB record via a
previous request,
the old information
will be kept for that
time.

URL:
localhost:8080/check/8

Body:

If the Attendance record
already exists in the DB,
it will be updated with
the time(s); if it doesn’t
exist yet then it will be
created.

“message”:
“Check in /
Check out
Success”,
“data”: [the
Attendance
record that
was created
or updated,
including
hours]

An
Attendance
record may
be
considered
valid if the
hours field is
nonzero.

In this example, Dr.
Bonnell’s total of 24
hours includes (is
entirely) the 24 hours of
work from which he is
checking out.

Add a User
to an
Event’s
Waitlist or
Signup list
(admins
only)

PUT “/calendar
/{x}
/{eventId}
/{userId}”

{x}:
w for waitlist
or
s for signup
list

none URL Examples:

Waitlist:

Signup:

“message”:
“[Waitlist/
Signup]
Success”,
“data”: null

Alternate responses:

Waitlist full on waitlist
attempt:

Event full, but waitlist
open, on signup
attempt:

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 17

NOTE: the
Event’s ID
comes first Event and waitlist both

full on signup attempt:

Remove a
User’s
Waitlist or
Signup
status
(admins
only)

DELETE “/calendar
/{x}
/{eventId}
/{userId}”

{x}: same as
above

NOTE: the
Event’s ID
comes first

none URL Examples:

Waitlist:

Signup:

“message”:
“[Removal
from
Waitlist/
Cancel
Signup]
Success”,
“data”: [null
for waitlist;
for signup,
the User
who was
signed up
instead, or
null if no one
was on the
waitlist]

For signup, when the
corresponding waitlist
wasn’t empty:

(In this example,
someone who is not
faculty cancelled their
signup. Maria was on
the non faculty waitlist;
this indicates that she
has now been signed
up as a result of the
cancellation.)

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 18

Check a
User In to
or Out of
an Event
(admins
only)

POST “/check
/{eventId}
/{userId}”

NOTE: the
Event’s ID
comes first

Checkin date/time
and/or Checkout
date/time, in the
same form as for
events

If only one time is
given and the other
time has already
been stored in the
DB record via a
previous request,
the old information
will be kept for that
time.

URL:

Body:

If the Attendance record
already exists in the DB,
it will be updated with
the time(s), but if it
doesn’t exist yet then it
will be created.

“message”:
“Check in /
Check out
Success”,
“data”: [the
Attendance
record that
was created
or updated,
including
hours]

An
Attendance
record may
be
considered
valid if the
hours field is
nonzero.

In this example, Dr.
Bonnell’s total of 25
hours includes the 24
hours of work from
which he is checking
out.

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 19

Find an
Attendance
by ID
(admins
only)

GET “/check
/{eventId}
/{userId}”

NOTE: the
Event’s ID
comes first

none URL: “message”:
“Find One
Success”,
“data”: [the
Attendance
data]

Find Total
Hours
required of
all students

GET “/users
/totalHours”

none N/A “Message”:
“Find Total
Required
Hours
Success”,
“data”: [the
decimal
number of
hours
required of
each
student]

The value being
returned for this request
comes from the
properties instead of
the database-- one can
change it by editing
application.yml.

Find all
Users who
are admins

GET “/users
/admins”

none N/A “Message”:
“Find All
Admins
Success”,
“data”: [list

Similar to below vvv

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 20

of all admin
Users;
empty list if
there are no
admins]

Find all
Users
(admins
only)

GET “/users” none N/A “message”:
“Find All
Success”,
“data”: [list
of all Users;
empty list if
there are no
Users]

Find info
on the
current
User

GET “/users
/current”

none N/A “message”:
“Find One
Success”,
“data”:
[User’s info]

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 21

Find a User
by ID
(admins
only)

GET “/users
/{userId}”

none URL: “message”:
“Find One
Success”,
“data”:
[User’s info]

Find a User
by email
(admins
only)

POST “/users
/email”

Just one field
“email” with the
email

“message”:
“Find One
Success”,
“data”:
[User’s info]

Save a new
User
(admins
only)

POST “/users” User’s info (don’t
worry about the ID)

Old field removed:
String “status”

“gradYear” is
optional (should
only be filled in for
students).
“admin” is optional;
false by default.

Default “type”: OTHER

“message”:
“Save
Success”,
“data”: [new
User’s info]

(Steve is not a student,
so his hoursLeft will

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 22

always be zero.)

Update a
User
(admins
only)

PUT “/users
/{userId}”

Same as above

Fields left blank on
update will NOT be
overwritten. (The
exception is
“admin” which will
default to false if it
is left blank. This
will always be
updated according
to the request
body.)

URL:

Body:

“message”:
“Update
Success”,
“data”:
[updated
User’s info]

Delete a
User
(admins
only)

DELETE “/users
/{userId}”

none URL: “message”:
“Delete
Success”,
“data”: null

N/A

Find the
current
User’s
Waitlist
info,
Events
signed up
for, or past
Attendance

GET “/users
/{x}”

{x}:
w for waitlist,
s for signup
list, or
a for list of
attendance

none URL examples

Waitlisted Info:
localhost:8080/users/w

Events Signed Up For:
localhost:8080/users/s

Past Attendance:
localhost:8080/users/a

“message”:
“Find
[Waitlist/
Signup list/
Attendance]
Success”,
“data”: [list
of Waitlisted
objects/
Events
signed up
for/
Attendance
objects]

Similar to below vvv

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 23

Find a
User’s
Waitlist
info,
Events
signed up
for, or past
Attendance
(admins
only)

GET “/users
/{x}
/{userId}”

{x}:
w for waitlist,
s for signup
list, or
a for list of
attendance

none URL examples

Waitlisted Info:

Events Signed Up For:

Past Attendance:

“message”:
“Find
[Waitlist/
Signup list/
Attendance]
Success”,
“data”: [list
of Waitlisted
objects/
Events
signed up
for/
Attendance
objects]

(not just a
list of
Events,
except for
signup)

Note: these
examples ->
each show a
list with only
one item,
but it’s still a
list instead
of just the
item

Waitlist:

Signup list:

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 24

Attendance:

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 25

Find all
Partner
Orgs.

GET “/orgs” none N/A “message”:
“Find All
Success”,
“data”: [list
of all Partner
Orgs.; empty
list if there
are none]

Find a
Partner
Org. by ID

GET “/orgs
/{partnerId}”

none URL: “message”:
“Find One
Success”,
“data”:
[Partner
Org’s info]

Find a
Partner
Org. by
email

POST “/orgs
/email”

Just one field
“email” with the
email

“message”:
“Find One
Success”,
“data”:
[Partner
Org’s info]

Save a new
Partner
Org.
(admins
only)

POST “/orgs” The organization’s
info (don’t worry
about the ID)

“message”:
“Save
Success”,
“data”: [new
Org]

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 26

Update a
Partner
Org.
(admins
only)

PUT “/orgs
/{partnerId}”

Same as above

Note: for other
objects, blank fields
are not overwritten
on update; but for
Partner Orgs, both
fields have to be
sent each time,
even if they are
unchanged-- in this
case blank fields
will be overwritten.

URL:

Body:

“message”:
“Update
Success”,
“data”:
[updated
Org]

Delete a
Partner
Org.
(admins
only)

DELETE “/orgs
/{partnerId}”

none URL: “message”:
“Delete
Success”,
“data”: null

N/A

Find
Events
hosted by a
Partner
Org.
(admins
only)

GET “/orgs
/h
/{partnerId}”

none URL: “message”:
“Find Hosted
Events
Success”,
“data”: [list
of Events;
empty list if
the org.
hosted no
Events]

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 27

Bulk
Insertion of
Users
(admins
only)

POST “/upload” Excel file to be
processed

“message” :
“Successfull
y saved x
users to the
Database.”

Bulk
Deletion of
Users
(admins
only)

POST “/bulkDelete” Excel file to be
processed

“message” :
“Successfull
y deleted x
users from
the
Database.”

Create a
Report for
a single
User
(admins
only)

GET “/report
/{userId}”

none URL:
[url]/report/1

Contains the
Excel file
with inline
Content
Disposition

N/A

Create a
Report for
a single
User via
Email
(admins
only)

POST “/report/email” Email passed in the
request body as a
String email

Turns out, it doesn’t
work to send a
GET request with a
body… so, POST!

Contains the
Excel file
with inline
Content
Disposition

N/A

Create a
Report for
an Event
(admins
only)

GET “/report
/event
/{eventID}”

none URL:
[url]/report/event/5

See above N/A

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 28

5. Firebase Management
The users are managed in the app using the admin-only “User Management” tab in the
navigation bar. Adding/removing a user should only be done using this feature because we
need to add them or remove them from both the backend database and Firebase authentication
directory. Adding or removing a user from one, but not the other can cause unexpected errors in
the application for that user. If for whatever reason you may need to log in to the Firebase
Console, Dr. Bonnell will have the login credentials. From there, you can navigate to the
“Authentication” dashboard and view the users in the system.

6. Deployment to Heroku
Heroku has a cool feature in that you may link it to a GitHub repository branch and it will detect
when changes are made to that branch and automatically deploy them.

● Automatic deployments: Handled automatically by Heroku based on the linked GitHub
repository.

● Manual deployments:
1. Navigate to volunteer-server-springproject
2. Deploy
3. Manual deploy
4. Deploy Branch

To change the linked GitHub account:
1. Navigate to volunteer-server-springproject
2. Click the “Deploy” tab
3. Disconnect the currently linked account
4. Choose your account and associated branch to automatically deploy

If you want to view the Spring Boot console:
1. Navigate to volunteer-server-springproject
2. “More” tab in the top right-hand corner
3. View logs

Billing information is currently managed by Dr. Bonnell’s account. If billing information needs to
be changed, you can do the following:

1. Click your user icon in the top right-hand corner of the screen
2. Click “Account Settings”
3. Click the “Billing” tab

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 29

7. Domain name management
All functions relating to the domain can be found under the Manage tab found in the Main
Dashboard found at www1.domain.com.
7.1. Purchasing a domain name

Within this site, information regarding:
● Domain lease renewal
● DNS and Name server pointer configuration

can be found throughout the various tabs.

7.1.1. Domain Lease Renewal
The domain at the time of this document will auto-renew on March 28, 2023. If the

administrator chooses to move to a different DNS management system (such as an
on-premises solution or a different registrar), transfers can be initiated after June 12, 2021 under
the Transfers tab in the left hand aside menu.

7.2. Configuring DNS and Nameserver settings
The DNS and Name servers tab will display the configuration for the global DNS pointers and
the DNS records for the tcusomservice.com domain listing.
Main Requirements:

● The DNS SOA record must match the Name servers listed or the domain will not point
towards the records, breaking the connection to the Heroku project (found as NS
records).

● The CNAME record is the single point of connection between Heroku DNS and
Domain.com DNS. If another service is used in the future (ex. AWS), this record will
need to be replaced with the new deployed location.

7.3. Enabling SSL
Heroku DNS currently provides free SSL encryption if using paid dynos, which are

currently being used in the deployment configuration. If this changes in the future or the project
moves to another service that does not provide SSL, Domain.com offers LetsEncrypt Free SSL
which should be enabled to ensure the connection remains secure.

For Heroku:
● Click on volunteer-server-springproject > Settings
● Scroll to the SSL Certificates section
● Click Configure SSL and select Automated Certificate Management

For Domain.com
● Select Manage and Select LetsEncrypt Free SSL and Enforce SSL

Confidential ©TCU & UNTHSC Volunteer
Scheduler, 2021

Page 30

https://www.domain.com/

